
A Systematic Study of Recent Smart
Contract Security Vulnerabilities

Zhuo Zhang1,4, Brian Zhang2, Wen Xu3,4, Zhiqiang Lin5

1Purdue University 2Harrison High School (Tippecanoe)

3Georgia Institute of Technology 4PNM Labs 5Ohio State University

A Systematic Study of Recent Smart Contract Security Vulnerabilities

Introduction

Exploitable bugs in smart contracts have caused significant monetary
loss ($1.57 billion were exploited from various smart contracts as of
May 1st, 2022), despite the substantial advances in smart contract bug
finding.

It is hence interesting to understand

• The effectiveness of existing techniques to detect real-world vulnerabilities

• The categories and distributions of bugs that cannot be detected by existing
techniques (i.e., machine unauditable bugs)

• How we can further improve existing techniques

A Systematic Study of Recent Smart Contract Security Vulnerabilities

Threat Model

• In our threat model, an adversary is a contract user who crafts special
inputs to exploit the on-chain contract and further cause monetary loss.

Smart Contract

Adversary

Crafted Inputs

Stealing Money from Projects

Hacker w/ privileges

• Rug Pull

• Spam Attacks

• Scam Attacks

• …

Out of Scope

A Systematic Study of Recent Smart Contract Security Vulnerabilities

Data Collection

• Code4rena[1] is a highly reputable audit contest platform, specificized
for Web 3.0 auditing.

[1] https://code4rena.com/

Hackers from all over the world Code4rena Contest

(Real-world Project)

Code4rena Judges

& Project Developers

Bug Reports Bug Reports

FeedbackAward Distribution

A Systematic Study of Recent Smart Contract Security Vulnerabilities

Data Collection

• Code4rena[1] is a highly reputable audit contest platform, specificized
for Web 3.0 auditing.

[1] https://code4rena.com/

113 Code4rena contests

$6.7M Bounty paid out

$2.8B Fund protected

358 Hackers/teams participated

462 Bugs analyzed, among which 341 are in-scope

A Systematic Study of Recent Smart Contract Security Vulnerabilities

Data Collection

• Code4rena[1] is a highly reputable audit contest platform, specificized
for Web 3.0 auditing.

• We also studied 54 real-world exploits happened from January 2022 to
June 2022 (Details can be found in our paper).

A Systematic Study of Recent Smart Contract Security Vulnerabilities

Research Questions

• How many real-world exploitable bugs are machine auditable?

• What are the categories and distributions of machine unauditable
bugs?

Bugs can be detected by existing techniques

A Systematic Study of Recent Smart Contract Security Vulnerabilities

Research Questions

• How many real-world exploitable bugs are machine auditable?

• What are the categories and distributions of machine unauditable
bugs?

• How difficult is it to audit exploitable bugs?

• What are the symptoms and fixes of machine unauditable bugs?

• Can machine unauditable be properly abstracted such that automated
oracles can be devised?

Bugs can be detected by existing techniques

Details can be found in our paper

A Systematic Study of Recent Smart Contract Security Vulnerabilities

RQ1: How many real-world exploitable bugs
are machine auditable?

• What kinds of Bugs are Machine-auditable?

Existing Techniques (38)

Fuzzing (11)

Static Analysis (12)

Formal Verification (5)

Symbolic Execution (10)

Arbitrary Write

Block-state Dependency

Assertion Failure

Compiler Error

Control-flow Hijack
Ether Leak

Ether Freezing

Gas-related Issue

Integer Bug

Mishandled Exception
Precision Loss

Reentrancy

Suicidal Contract

Transaction-ordering Dependency
Transaction Origin Use

Uninitialized Variables

Weak PRNG
Machine-Auditable Bugs (17):

Their oracles are general and

sufficiently simple to support

instantiations in a wide range of

projects.

A Systematic Study of Recent Smart Contract Security Vulnerabilities

RQ1: How many real-world exploitable bugs
are machine auditable?

• What kinds of Bugs are Machine-auditable?

Existing Techniques (38)

Fuzzing (11)

Static Analysis (12)

Formal Verification (5)

Symbolic Execution (10)

Arbitrary Write

Block-state Dependency

Assertion Failure

Compiler Error

Control-flow Hijack
Ether Leak

Ether Freezing

Gas-related Issue

Integer Bug

Mishandled Exception
Precision Loss

Reentrancy

Suicidal Contract

Transaction-ordering Dependency
Transaction Origin Use

Uninitialized Variables

Weak PRNG
Machine-Auditable Bugs (17):

Their oracles are general and

sufficiently simple to support

instantiations in a wide range of

projects.

Alarm once any integer variable is overflow

or underflow.

A Systematic Study of Recent Smart Contract Security Vulnerabilities

RQ1: How many real-world exploitable bugs
are machine auditable?

Machine

Unauditable

Machine

Auditable

Finding: A large portion of exploitable bugs in the wild (i.e., 79.5%) are

not machine auditable.

271
(79.5%)

70
(20.5%)

A Systematic Study of Recent Smart Contract Security Vulnerabilities

RQ2: What are the categories and
distributions of machine unauditable bugs?
• Erroneous accounting (26.6% of 462)

• Incorrect implementation of existing
domain-specific financial models

• Most popular amongst audit contests because
contests bring in very broad domain
expertise on various business models 26.6%

A Systematic Study of Recent Smart Contract Security Vulnerabilities

RQ2: What are the categories and
distributions of machine unauditable bugs?
• Erroneous accounting (26.6%)

• Inconsistent State Updates (18.1% of 462)

• Internal contract storage not updated completely
after state changes

• Usually small in impact, but can be accumulated
for bigger effect

18.1%

A Systematic Study of Recent Smart Contract Security Vulnerabilities

RQ2: What are the categories and
distributions of machine unauditable bugs?
• Erroneous accounting (26.6%)

• Inconsistent State Updates (18.1%)

• ID Uniqueness Violation (15.9%)

• Misuse/Lack of access control in ID-
specific functionalities

• Easiest to find

15.9%

A Systematic Study of Recent Smart Contract Security Vulnerabilities

RQ2: What are the categories and
distributions of machine unauditable bugs?
• Erroneous accounting (26.6%)

• Inconsistent State Updates (18.1%)

• ID Uniqueness Violation (15.9%)

• Privilege Escalation (9.2%)

• Unexpected business flow that leads to
weaker access control

• Modification of existing program analysis
tools may help prevent these bugs

9.2%

A Systematic Study of Recent Smart Contract Security Vulnerabilities

RQ2: What are the categories and
distributions of machine unauditable bugs?
• Erroneous accounting (26.6%)

• Inconsistent State Updates (18.1%)

• ID Uniqueness Violation (15.9%)

• Privilege Escalation (9.2%)

• Atomicity Violations (8.1%)

• Action sequences may modify values that are
in use by other sequences

• Second most difficult to find

8.1%

A Systematic Study of Recent Smart Contract Security Vulnerabilities

RQ2: What are the categories and
distributions of machine unauditable bugs?
• Erroneous accounting (26.6%)

• Inconsistent State Updates (18.1%)

• ID Uniqueness Violation (15.9%)

• Privilege Escalation (9.2%)

• Atomicity Violations (8.1%)

• Price Oracle Manipulation (5.8%)

• Manipulating external price authorities to
exploit a contract’s funds

• Rank 1st regarding popularity in real-world

• $44.8 million in first half of 2022

5.9%

A Systematic Study of Recent Smart Contract Security Vulnerabilities

RQ2: What are the categories and
distributions of machine unauditable bugs?
• Erroneous accounting (26.6%)

• Inconsistent State Updates (18.1%)

• ID Uniqueness Violation (15.9%)

• Privilege Escalation (9.2%)

• Atomicity Violations (8.1%)

• Price Oracle Manipulation (5.8%)

• Contract-Specific Bugs (16.2%)

• Bugs and exploits that have a very low
likelihood of appearing in other contracts

16.2%

A Systematic Study of Recent Smart Contract Security Vulnerabilities

RQ2: What are the categories and
distributions of machine unauditable bugs?
• Price Oracle Manipulation (5.8%)

• Erroneous accounting (26.6%)

• ID Uniqueness Violation (15.9%)

• Inconsistent State Updates (18.1%)

• Privilege Escalation (9.2%)

• Atomicity Violations (8.1%)

• Contract-Specific Bugs (16.2%)

Finding: Machine unauditable bugs can be

classified to 7 categories, with around 85%

are not project specific.

A Systematic Study of Recent Smart Contract Security Vulnerabilities

Take Away

• More than 80% of exploitable bugs are beyond existing tools.

• This is largely due to the lack in describing and checking the corresponding
domain-specific properties (i.e., general testing oracles).

• The 80% of exploitable bugs that are beyond tools, called machine
unauditable bugs (MUBs), can be classified into 7 categories.

• One of the categories (accounting for 16.2% of the MUBs) is
project/implementation specific such that general oracles may not exist.

• The remaining 6 categories have clear symptoms and can be properly
abstracted such that automated oracles may be devised.

Our paper tries to raise the incentive of security researchers to develop automated

oracles for machine unauditable bugs in smart contracts.

A Systematic Study of Recent Smart Contract Security Vulnerabilities

Other Findings in the Paper

• Majority of exploitable bugs in the wild are hard to find, including
those within and beyond the scope of tools.

• Different types of MUBs have different distributions and different
difficulty levels
• Price oracle manipulation and privilege escalation are most popular in real-

world exploits

• Accounting errors are most popular in bugs found during audit contests

• MUBs are easy to fix, requiring 15 LoC on average.

• In our guided audit, we found 15 bugs, awarded around $150,000

A Systematic Study of Recent Smart Contract Security Vulnerabilities

Related Works

• N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum smart contracts (sok),” in
International conference on principles of security and trust. Springer, 2017.

• W. Dingman, A. Cohen, N. Ferrara, A. Lynch, P. Jasinski, P. E. Black, and L. Deng, “Classification
of smart contract bugs using the nist bugs framework,” in 2019 IEEE 17th International
Conference on Software Engineering Research, Management and Applications (SERA), 2019.

• P. Zhang, F. Xiao, and X. Luo, “A framework and dataset for bugs in ethereum smart contracts,” in
2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE,
2020.

• J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining smart contract defects on
ethereum,” IEEE Transactions on Software Engineering, 2020.

• K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step by step towards creating a safe
smart contract: Lessons and insights from a cryptocurrency lab,” in International conference on
financial cryptography and data security. Springer, 2016.

A Systematic Study of Recent Smart Contract Security Vulnerabilities

Thanks!

zhan3299@purdue.edu

bzhangprogramming@gmail.com

Online Poster

